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Abstract
The airfreight industry of shipping goods with special handling needs, also known as special cargo, often deals with non-

transparent data and outdated technology, resulting in significant inefficiency. A special cargo ontology is a means of

extracting, structuring, and storing domain knowledge and representing the concepts and relationships that can be pro-

cessed by computers. This ontology can be used as the base of semantic data retrieval in many artificial intelligence

applications, such as planning for special cargo shipments. Domain information extraction is an essential task in imple-

menting and maintaining special cargo ontology. However, the absence of domain information makes instantiating the

cargo ontology challenging. We propose a relation representation learning approach based on a hierarchical attention-based

multi-task model and leverage it in the special cargo domain. The proposed relation representation learning architecture is

applied for identifying and categorizing samples of various relation types in the special cargo ontology. The model is

trained with domain-specific documents on a number of semantic tasks that vary from lightweight tasks in the bottom

layers to the heavyweight tasks in the top layers of the model in a hierarchical setting. Therefore, it conveys comple-

mentary input features and learns a rich representation. We also train a domain-specific relation representation model that

relies only on an entity-linked corpus of cargo shipment domain. These two relation representation models are then

employed in a supervised multi-class classifier called Special Cargo Relation Extractor (SCRE). The results of the

experiments show that the proposed relation representation models can represent the complex semantic information of the

special cargo domain efficiently.

Keywords Special cargo shipment � Relation representation � Relation classification

1 Introduction

The use of digital technologies is no longer optional but

necessary to become competitive in many industries. The

airfreight industry is one of them. However, during the

digitization process in the airfreight industry, little atten-

tion has been paid to the special cargo transportation [1].

The special cargo (or special freight) refers to the sub-

stances which require special handling during transporta-

tion (e.g., pharmaceuticals with stringent temperature

requirements, live animals, chemical and food products).

Managing the process of special cargo transportation

depends on a variety of domain data. In practice, this data

are often in large volume and variety with different gran-

ularities, formats and sometimes ambiguous properties.

Ontologies can effectively address these challenges by

conceptualizing and structuring the domain knowledge.

They are used in many applications such as semantic

integration and reasoning, routing and various operational
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decisions in special cargo transportation. They also can be

exploited in the question-answering task for specific

queries about routing special cargos.

For instance, route planning at freight forwarders can

benefit from advanced information extraction and ontolo-

gies. Route planning for special cargo products (i.e., what

carriers, services, additional options, and conditions to

choose for special cargo shipment) can be a complex task

as the number of possibilities for routing decisions can be

overwhelmingly high. A recent example is the transporta-

tion of COVID-19 vaccines that needs cautious routing

decisions. Airfreight forwarders make these decisions by

acquiring the necessary information related to routings

with the help of industry partners. Nowadays, most activ-

ities are still conducted with human intervention and

operators rely heavily on expert knowledge. Therefore,

getting all the necessary information can be challenging

because of the complex attributes of goods (e.g., chemical

characteristics) and the absence of standardization in the

services of forwarders and suppliers. Manual data collec-

tion is inefficient and costly, negatively affecting the per-

formance of the entire shipment operation [1]. Thus, there

is an urgent need to develop a database of special freight

capabilities that provides structured data from which

specific features of the historical shipments data can be

retrieved to build accurate predictive models for routing

options. Such predictive models can provide a quick

evaluation over different routing options in terms of per-

formance, e.g., the probability of delay and/or damage.

Figure 1 shows a general schema of how our proposed

methodology can be applied in the context of special cargo

transportation. In particular, the proposed relation repre-

sentation models are part of the Information Extraction (IE)

engine that helps to populate an ontology and employ it in

semantic reasoning. In general, IE is the task of automat-

ically extracting useful information from unstructured and/

or semi-structured enormous data and is an essential step in

the ontology population. It is used for a variety of tasks in

Natural Language Processing (NLP), such as machine

translation [2] and speech recognition [3]. Other advanced

related tasks to IE include handling repetitive processes

and disturbances [4, 5] and Building Temperature Control

[6] that apply Iterative Learning Control (ILC) approach.

ILC uses the previous experiment data to handle the

repetitive control processes and improves the tracking

performance for repetitive processes by learning from the

historical information.

In the special cargo domain, the extraction of the

available information for populating the ontology has also

a critical role. Relation extraction is a fundamental subtask

in IE that helps to identify relationships between instances

of ontology concepts and to acquire and classify ontology

instances. In this paper, we extract and structure the special

cargo information from a number of resources to instantiate

the special cargo knowledge resource that is built using

knowledge extraction and UPON (Unified Process for

Ontology) [7]. The results obtained from ontological rea-

soning can aid the managers of airfreight forwarders in

their routing decisions.

The main information on the special cargo domain is

available on the web pages of the freight forwarders and

airlines. Various data sources use different templates,

structures and languages to present the data. These sources

are nonstandard and contain a large diversity in terminol-

ogy. It is difficult to match the same information that is

expressed in different ways. Furthermore, the absence of a

resource terminology is a big challenge in practice. The

massive volume of data makes manual information

extraction costly. This research aims to develop deep

neural network models with the least available samples in

order to elicit the information from the special cargo

domain. In particular, this study addresses the challenge of

extracting special cargo domain knowledge in order to

instantiate the ontology with the least human involvement

and the lack of sufficient amount of training samples for

developing a robust model. The experimental findings

represent the effectiveness of the special cargo relation

representation models in two tasks: relation extraction and

few-shot relation matching. Few-shot learning is a machine

learning approach that enables models to learn from a small

amount of labeled data, typically with very few examples

per class. It aims to address the challenge of limited labeled

data availability by leveraging prior knowledge learned

from related tasks or domains to quickly adapt and gen-

eralize to new tasks or domains with minimal supervision.

Few-shot has received much attention in recent years in

Fig. 1 A general schema for using of ontology in application. IE Engine assists to populate an ontology and utilize it in semantic reasoning
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different domains such as fault diagnosis. MAMN [8] is an

intelligent fault diagnosis model for addressing the prob-

lems of sparse fault samples and data cross-domain in data-

driven fault diagnosis. The core of the method is to com-

bine the relative similarity information of sample groups

with the metainformation between data domains.

The main contributions of this paper are as follows:

• We propose a novel hierarchical attention-based multi-

task architecture for relation representation learning in

the special cargo domain and apply it in the multi-class

relation classification task. The model is simple, robust,

and domain-independent.

• Using transfer learning, we investigate leveraging a

Bidirectional Encoder Representations from Transform-

ers (BERT)-based relation extraction model as a feature

extractor for multi-class relation extraction in the

special cargo shipment domain.

• This study is one of the first in Information Extraction

for transportation, particularly the special cargo ship-

ment domain, that has utilized the deep neural models

for multi-class relation extraction.

• We develop a new collection of datasets called Special

Cargo Relations (SCR). It is made publicly available as

evaluation datasets for multi-task relation extraction

tasks in the special cargo shipment domain.

• The data set contains various examples for each relation

type to train a relation classifier using the suggested

relation representation models.

This paper is organized as follows. In the next section,

we review the literature. Section 3 develops the proposed

architecture in detail; Sects. 4 and 5 depict the steps of the

datasets and results of the experiments, respectively;

finally, Sect. 6 describes the practical implications of this

work and Sect. 7 concludes the paper.

2 Related work

An explicit and formal specification of the underlying

concepts of a domain is referred to as an ontology. The

components of an ontology are concepts, relations, rules,

and terms [9, 10]. Ontologies can be built manually by

combining available ontologies, semiautomatically or

automatically using the so-called ontology learning cake

[11]. In an ontology, two types of elements exist: TBox and

ABox.

TBox contains the concepts and relations of the ontol-

ogy. ABox contains the realizations of concepts and the

relations between them. They are real instances of the

concepts specified in TBox. The process of updating an

ontology based on the instances of input information

source is called ontology population. When the extracted

information conforms to TBox, it is added to the ABox.

Therefore, the ontology population does not affect the

ontology structure.

Various ontologies are developed in some aspects of the

transportation domain. The Transport Disruption Ontol-

ogy1 collects and models the travel data and helps in

identifying events that have a disruptive impact on travel.

Some ontologies [12] are modeled to support decision-

making for drivers by specifying efficient routes for

emergency vehicles. Different ontologies such as Gen-

CLOn [13] and iCity Ontology2 are designed to obtain the

domain of city logistics and urban systems. Although

various ontologies are designed in the context, populating

ontology is a complicated task.

Many ontology population methods have recently been

presented, ranging from basic rule-based and statistical

approaches to complicated machine learning and hybrid

architectures. Some of the main techniques are reviewed in

this section.

Rule-based methods: These methods are the most

common type of approach in the ontology population task.

They rely on a number of prespecified rules to determine

the structure of the target data. Hearst [14] presented the

so-called scalable rule-based technique using the lexico-

syntactic patterns produced with the bootstrapping of some

seed samples. Since the approach extracts the hyponymy

relations, it can be utilized to generate taxonomy relations

in the ontology learning task.

Inspired by Hearst, Finkelstein and Yangarber [15] also

proposed a semiautomatic rule-based method by using

lexico-syntactic patterns to extract concept and relation

instances from text. These systems utilize expert inter-

vention for generating the rules based on some candidate

patterns [15]. Ibrahim [16] is a semiautomatic ontology

population method for extracting instances from biomedi-

cal text. Building the biomedical text syntactic parse tree of

the sentences, lexico-syntactic patterns are generated by

domain experts and used for identifying the concepts.

SOBA [17] is another example of automatic rule-based

ontology population systems. The rule-based approaches

require a thorough insight of the domain. The fundamental

disadvantage of these approaches is the high necessity for

human interaction [18].

Statistical-based methods: There are some statistical

ontology population systems that use similarity measures

and fitness functions to estimate the similarity degree of the

extracted information and the ontology instances. Maynard

et al. [19] proposed statistical domain-independent systems

that extract the concept instances from unstructured text.

1 https://transportdisruption.github.io/.
2 https://enterpriseintegrationlab.github.io/icity/UrbanSystem/doc/

index-en.html.
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Another domain-independent statistical system is presented

in [20] that uses statistical similarity techniques in order to

determine the correct class for each extracted concept

instance.

Machine learning-based methods: These models are

commonly applied in populating ontologies and catego-

rized into three major classes: supervised, weakly super-

vised, and unsupervised approaches [21].

Adaptiva [22] is a domain-independent semiautomatic

ontology population system that uses seed samples of

concepts and relations among them as input to recognize

the sentences containing the examples of relations using

the bootstrapping approach. Annie is a GATE component

used for extracting concepts. Ontosophie [23] is a semi-

automatic method that uses annotated data for relation

types in a specific domain. By applying NLP tools, the

main constituents of the sentences are used for inducing the

extraction rules. The extractions are assigned a confidence

value that shows the correctness degree of them. Web

? KB [24] is a web-centric machine learning method that

populates ontology using tools managing HTML pages. As

the existing webpages are the rich source of information in

different domains, this approach finds the webpages iden-

tified as the instances of the seed ontology classes. These

webpages are linked by ontology relation with examining

the hyperlink paths among the webpages. Three different

Naive Bayes classifiers are used in order to classify the web

pages to the most relevant class. The ontology relations are

learned using a supervised first order inductive learning

(FOIL) algorithm. Mintz [25] applies a distant supervision

algorithm in order to find various patterns for different

relation types.

Open information extraction (OIE) systems are not

constrained to a predefined set of relations and can extract

any type of relations from a massive and unstructured

corpus automatically. There are various types of OIE

extractors from shallow such as SONEX [26] to deep such

as SDE-OIE [27]. The main difference between these two

categories is related to the depth of the NLP tools they

exploit. Deep extractors deal with sophisticated structures

such as long-distance relations; therefore, they have high

performance in terms of recall. OIE systems are designed

based on various types of methods, including generic pat-

terns [28], bootstrapping [29], supervised [30], and unsu-

pervised learning [31]. These systems suffer from

incoherent extractions and uninformative extractions.

Deep neural network-based methods: Deep neural

networks are powerful approaches that have drawn much

attention in recent studies of ontology population since the

feature engineering procedure is done automatically. This

is the key advantage of deep neural network models over

other machine learning methods. In order to extract infor-

mation at the lexical and contextual levels from sentences,

several approaches use relation classification and various

deep neural models, such as convolutional deep neural

networks [32]. The extracted features are then sent into a

softmax classifier that predicts the target relation. All of the

approaches require an annotated corpus with concepts and

the relations between them.

MTB [33] is a task-independent approach for learning

the representation from entity-linked English Wikipedia.

The approach was derived from Harris’ distributional the-

ory and is based on BERT [34]. Recently, systems that are

built with pre-trained models have attained high efficiency

[35].

Some ontology population systems are a combination of

machine learning and rule-based methods [36]. TR-DOE

[10] and RV-DOE [10] are two hybrid methods that rely on

the trade-off between shallow and deep OIE by using

certain rules. BOEMIE [37] is a hybrid ontology popula-

tion system that extracts information from different

resources and applies reasoning to them. Figure 2 shows a

taxonomy of ontology population methods.

Transfer-based deep neural networks have achieved

remarkable success in many NLP tasks with limited data

and are being widely used in different domains.

This research is an extension of our previous work [38],

where we have proposed a framework for ontology popu-

lation framework for the special cargo and examined an

effective method for building an information extraction

engine. In this paper, we present a very detailed description

of the hierarchical attention-based multi-task architecture

and the generated datasets. Moreover, we propose a new

model for extracting information in the special cargo

transportation domain using Matching the Blanks [33]

method and investigate the performance of the proposed

models in a new task namely, few-shot relation matching.

The special cargo transportation domain suffers from the

lack of data and can highly benefit from the strength of the

novel transfer-based neural networks models. To our

knowledge, this work is one of the first studies addressing

IE in the special cargo domain that is highly important in

the design and development of various intelligent

applications.

3 Methodology

Special cargo ontology has many applications in the

transportation and global freight forwarding of special

cargo, route planning, traffic scheduling, risk assessment,

and decision-making systems. Developing and populating

an ontology for shipping special cargoes is challenging. It

needs a description of concepts, properties, and relations

among the concepts. The UPON [7] technique is used to

produce a precise conceptualization of special cargo
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transport in [39]. This effort uses elicitation approaches to

organize the available domain information and obtain it

from domain experts. Concepts should be instantiated

using domain information to populate the cargo ontology.

Webpages, online texts, and databases dedicated to cargo

transportation include a wealth of important information.

The required knowledge needs to be gathered from many

sources and related coherently to populate the cargo

ontology. As the available relation extractors heavily relied

on the knowledge graph or ontology utilized in their

design, and there is a great variation among them, their

application in the special domain is challenging. Because

of the lack of annotated data for the cargo shipment

domain, constructing an effective relation extractor is

challenging and time-consuming. The main goal of this

paper is the relation representation task that is the core

component in populating the special cargo in Fig. 3. We

described the pipeline with more details in [38].

We suggest a multi-task representation learning

approach to overcome this issue that is based on light tasks

trained from open domain literature, with automated

annotating and the least human intervention. The model is

compared with a BERT-based relation representation

model adapted with the special cargo domain. We leverage

these two specific relation representation models to ini-

tialize a supervised multi-task relation classification model

and tune them on a small special cargo domain dataset.

3.1 Hierarchical attention-based multi-task
model for learning relation representation
from special cargo domain

Existing pre-trained deep learning-based language models

can extract different features and are employed in multiple

downstream tasks [40]. The lack of training data in the

special cargo domain is the most significant obstacle to

developing an effective representation model. Manually

generating train data for relation classification with multi-

ple classes is too costly. Following [41, 42], we proposed a

hierarchical-based approach built on some underlying tasks

that encode features from shallow tasks in the bottom

layers of the model and deep tasks in the top layers of the

model. We can automatically build sufficient datasets for

the underlying tasks with minimum human interventions

and apply them in the multi-task representation model

setting. Thus, building the model is simple because

underlying tasks are trained using domain-specific data

created automatically, that is not costly. Moreover, as

multi-task models take advantage of inference transmission

across tasks, resulting in complementing features in the

generated embeddings and thus, improved generalization

performance [42].

This multi-task learning model can be employed as a

rich representation of special cargo domains in different

tasks consisting of multi-class relation classification.

Fig. 2 A taxonomy of relation extraction methods in ontology population approaches. Deep neural network-based methods are being widely used

in information extraction

Fig. 3 The pipeline for

populating the special cargo

ontology [38]. Information

extraction engine is the core of

the special cargo ontology

population task
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Fig. 4 Illustration of the proposed hierarchical model for learning

relation representation in classifying relation types. The hierarchical-

based approach is built upon some underlying tasks that encode

features from superficial tasks in the bottom layers of the model and

complex tasks in the top layers of the model
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Figure 4 shows the architecture of the multi-task repre-

sentation learning model.

Word embedding: The input is a representation of the

input sentence consisting of three various embedding

approaches, namely GloVe [43] for word embedding,

ElMo [44] for contextual embedding, and a model based on

Convolutional Neural Network (CNN) [45] for character-

level embedding. This yields a comprehensive representa-

tion of the input sentence that covers features from char-

acter to context level. Hence, each word wt in the input

sentence s = (w1, w2, …, wn) is encoded as ge, that is the

result of concatenating three different word embeddings.

CNN-based character-level embedding is computationally

efficient and facilitates the training procedure. We fine-

tune the GloVe model with the domain data during the

training of the proposed model. ElMo generates cus-

tomized representation for the same input in various situ-

ations. Many successful results have been reported using

ElMo in different NLP downstream applications before

emerging BERT. To support a reasonable comparison with

recent models of natural language (e.g., BERT), we do not

apply such embedding models as the input of the proposed

approach.

Name entity recognition (NER): The hierarchical

model consists of three different shallow tasks. NER is the

first underlying task with a conditional random field (CRF)

for identifying NER tags. Name entity mentions are rec-

ognized from the embedding vector and classified into

predetermined classes. The concatenated embedding vector

is fed into a 2-layer BiLSTM network with an attention

layer. The network encodes the input by taking the word

embedding ge and generating sequence embeddings gner.

Then it is fed into a CRF-based sequence tagging layer.

The attention layer enables the encoding of the sequence

data by allocating a significance value to every component.

It generates a weighted vector multiplied by the vector of

features obtained from LSTM in each time step [35]. Let H

be a matrix of LSTM output vectors [h1, h2, …, hn], where

n is the sentence length. A weighted sum of LSTM output

vectors composes the representation r of the sentence [35].

M ¼ tanh Hð Þ ð1Þ

a ¼ softmax wTM
� �

ð2Þ

r ¼ HaT ð3Þ

where H [ Rdw�T , dw is word embedding size, w is a vector

of trainable weights, and wT is a transpose. The dimension

of w, a, r is dw, n, dw, respectively. The representation for

classification is attained by:

h� ¼ tanh rð Þ ð4Þ

Entity detection (ED): It is another fundamental task in

the proposed architecture that is similar to NER. In

comparison with NER, which focuses just on the name

entities, ED is a wider solution and entails identifying all

relevant references to a real-life entity. ED is defined as a

sequence tagging problem that utilizes a 2-layer BiLSTM

with an attention layer and a CRF layer. The representation

vectors from the bottom layer are concatenated [ge,gner]

and given to the encoder that generates representations ged.

Binary relation extraction: It is the process of

extracting semantic relationships between name entities

from textual data (RE). The relationship generally involves

two or more entities and is traditionally considered as a

classification problem. A binary relation classifier can

determine if a pair of entities have a specific relationship.

This task requires mention detection and classification, and

we used a joint model developed in [46] that develops the

subtasks together. Similar to NER and ED, binary relation

extraction has a 2-layer BiLSTM with a layer of attention.

The binary relation classification is trained with a fully

connected layer and a classification layer with softmax.

The outputs of the preceding tasks are the inputs of each

current task and the input embedding of the entire model.

The encoder takes [ge, ged] as input and generates a rep-

resentation indicated as gre. A feed forward network

receives these representations as input.

There appears to be no consensus on how to train a

hierarchical multi-task model. We performed the success-

ful training approach presented in [42]. For training the

model, we randomly select a batch of training data for the

target task in each iteration and the parameters of the task

are updated. Sampling of tasks are done equally, and the

procedure is repeated till convergence is achieved.

Multi-class relation extraction: The hierarchical multi-

task architecture is trained using domain-specific data and

used as a based model and as a means for extracting fea-

tures for the other model, namely the multi-class relation

classifier. The final layer of the hierarchical model was

eliminated, and the rest of the layers were used to extract

features for SCREHMTL.

We can leverage pre-trained models to transfer common

features to our domain since there is not enough data in the

target domain to train an efficient multi-class relation

extractor. As a result, the performance of the target model

that is trained using the base model and with only a few

instances is effectively benefited from transferred features.

In a nutshell, the binary classifier utilizes the rich rela-

tion representation generated by a hierarchical attention-

based multi-task model with adequate data samples in the

special cargo domain. The ultimate configuration of the

model is specified by applying the relation embedding

obtained from the hierarchical architecture that operates as

a way for extracting features for the multi-class extractor.
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This paper is an extension of our previous work [38] and

investigates two different transforming models as relation

representations for extracting multi-class relation types.

3.2 Matching the blanks for learning relation
representation from special cargo domain

The airfreight industry of shipping special cargo is a low-

resource domain without annotated data. In order to

decrease the need for human effort in generating datasets

and also for comparison purposes, we build another rela-

tion representation model that relies on entity-linked text

data.

We propose a relation representation method for special

cargo domain based on the Matching The Blanks (MTB)

[33] approach. MTB is Google’s state-of-the-art relation

representation that significantly outperforms previous

works in general web text. We model it with our relations

and tune it on the special cargo domain for building

SCREBERT(EM)?MTB that is a multi-class relation extractor

based on BERT.

We apply the BERT [34] model to encode the relations

between entity pairs in the special cargo shipment domain.

BERT is a language model built based on multiple trans-

former layers and self-supervised learning that utilizes a

huge volume of corpus data to learn better feature repre-

sentation of words. It has obtained state-of-the-art perfor-

mance on a variety of NLP tasks.

The relation representation is trained without human

annotation data using a plain text corpus with name entities

linked to unique identifiers. A relation statement is defined

as a segment of text containing two marked name entities

and shown as (~r , s1, s2) where ~r is a sequence of tokens and

s1 and s2 are the spans of indices that determine two

entities in the relation statement.

Because of the low-resource nature of the domain and

availability of automatic entity resolution annotation sys-

tems for generating training samples, MTB approach is

adapted to the special cargo domain by generating training

data based on the relation statements with marked name

entities replaced with a special symbol [BLANK], as

shown in Fig. 5.

In the training process, MTB exploits a pair of relation

representations for each pair of relation statements with the

aim of learning an encoder fh that specifies if two

statements express the similar relation using the following

binary classifier.

p l ¼ 1jr; r0ð Þ ¼ 1

1þ exp fh rð Þ|fh r0ð Þ ð5Þ

The classifier allocates a probability when r and r0

embed the same relation (l = 1) or not (l = 0).

Therefore, given a pair of relation statements, MTB tries

to learn an embedding model that their inner product is

high when both contain the same entity pair and low when

entity pairs are different. In this way, the encoder is learned

from distant supervision in the form of entity-linked text

using the MTB method [33]. Figure 6 depicts the training

process.

The parameters of the relation encoder fh are learned by

minimizing the following loss. de;e0 is the Kronecker delta

that assigns the vale 1 when e = e0,and otherwise 0.

L Dð Þ ¼ � 1

Dj j2
X

r;e1;e2ð Þ2D

X

r0;e
0
1
;e

0
2ð Þ2D

de1;e01
de2;e02

: log p l ¼ 1jr; r0ð Þ

þ 1� de1;e01
de2;e02

� �
:log 1� p l ¼ 1jr; r0ð Þð Þ

ð6Þ

In the training setup, the loss of masked language

models of BERT and MTB is minimized concurrently.

Training corpus generation is described in Sect. 4. We test

various training data and BERT models for training the

relation statement encoder in this architecture.

Using the MTB pre-train model on domain data, the

relation extraction model is built. The architecture of

relation statement classification using MTB is illustrated in

Fig. 7. As shown in the figure, the target entities are

marked with special entity markers in the input. Then,

BERT takes the marked sentence as input and the states

related to the beginning of the two entity markers are

joined and the relation representation retrieved.

The generated relation representation from the BERT

transformer is fed into a fully connected layer. This layer is

either the normalization of the relation representation or

linear activation function. The layer type is selected as a

hyper-parameter. The last layer is a classification layer

with softmax activation that produces the probability of

each class. These layers are trainable using a few instances

for each type of relation.

Fig. 5 Two relation statements

that share the same pair of name

entities marked with [BLANK]
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4 Datasets

We utilize different resources for evaluation of the pro-

posed models. These sources are discussed in greater detail

in this section.

4.1 Train data for MTB

The training data for learning BERT-base relation are

created by extracting the cargo domain relevant cargo news

text pages and HTML paragraphs from cargo websites and

eliminating tables and lists. In total, around 600,000 words

were collected. We use Google API3 for annotating the

Fig. 6 An overview of the

training process in MTB. The

figure depicts that two different

relation statements are fed into

BERT. The classifier is defined

to learn a relation encoder that

is utilized to specify if two

relation representations embed

the same relation. Parameters of

the encoder is learned by

minimizing the loss function

Fig. 7 Architecture of the special cargo relation classifier. Target

entities in the input (FAA and PharmaPort360) are represented using

special markers showing the start ([E1] and [E2]) and the end ([/E1]

and [/E2]) of each entity. The relation representation is returned after

combining the states associated with the beginning of the two entity

markers

3 https://cloud.google.com/natural-language/docs/basics#entity_

analysis.
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corpus text spans with a unique identifier. Relation state-

ments containing at least two entities within a window of

40 tokens are extracted. These domain relation statements

are utilized in the training procedure in which the entities

are replaced with a [BLANK] notation.

4.2 Train/test data for the attention-based
hierarchical multi-task model

The significant challenge is the lack of annotated resources

in the special cargo domain. In this section, we explain how

the automatic annotation is built to generate labeling for

the underlying tasks in the attention-based hierarchical

multi-task model. Figure 8 depicts the procedures involved

in creating the training data.

We collected4 28,809 cargo documents from news web

pages that consist of formal texts to train the binary relation

classifier. We employed an automatic filtering method to

find all candidate documents associated with the special

cargo domain. After applying the Latent Dirichlet Alloca-

tion (LDA) [47] topic model, we generated ten clusters.

Unlike keyword-based methods, LDA does not need a

predetermined list of keywords for document filtering. The

cluster with the more relevant terms is selected as the most

domain representative. A threshold of 0.9 is used to guar-

antee that only documents with high relevancy are cap-

tured. In the end, 775 filtered texts were gathered.

Different NLP tasks, including sentence splitting, tok-

enization, NER, and part-of-speech (POS) tagging, are

carried out in the preprocessing component. We adopted a

fully automatic annotating approach for labeling data

because deep learning models demand a large volume of

training data, and manually producing this data is costly.

Entity Extraction and Relation Extraction are the two main

components of the automated annotating procedure. The

entities are elicited from the texts using an unsupervised

domain-specific entity extraction framework [48] and a

NER tool [49].

The entity extraction task consists of three major mod-

ules. The Candidate Selection component uses heuristics to

select candidate keywords from a list of approved POS.

The candidate lexical terms are then prioritized depending

on the text representation in the Candidate Ranking com-

ponent. In the Keyphrase Formation, the rated candidate

keywords are refined, and the final keyphrases are

Fig. 8 An overview of the dataset generating for training the hierarchical attention-based multi-task model. Entity Extraction and Relation

Extraction are the two main components of the automated annotating procedure

4 We use the requests package and Beautiful Soup library.
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generated. We utilized pke [50], an open-source library in

python for keyphrase extraction that includes a variety of

statistical and graph-based techniques. According to our

experiments, KPM [51], a statistical-based technique, and

PositionRank [52], a graph-based approach, outperform the

other algorithms for extracting specific cargo keyphrases.

Figure 8 depicts the four primary phases of a general

clustering-based relation extraction technique. The input of

the Relation Extraction task is all sentences from the Entity

Extraction component, as well as labeled entities. The co-

occurrence calculation step extracts a pair of name entities

and their context that happens within a defined window

size. The contexts of the name entities pair that occur

simultaneously are considered in terms of similarity. This

is necessary for the clustering task. We use the so-called

fast Levenshtein [53] as a similarity measurement calcu-

lation of the contexts based on the minimum edit distance

of the two strings. We employ the DBSCAN [54] cluster-

ing algorithm that is not dependent on the predefined

number of clusters. Based on our evaluation, since KPM

obtains the highest performance, we apply it as the key

extraction method. The Labeling component labels the

relation clusters relative to the special cargo domain. The

clusters are labeled as relevant or irrelevant using patterns

from the annotated development set.

We randomly selected 223 documents from the filtered

collection in order to annotate them for the binary classifier

as relevant or irrelevant and generate test data. 118 docu-

ments are deleted due to ineligibility, and the rest are uti-

lized in the Dev and Test collection. Besides, we randomly

selected a dataset of 10 online domain documents. Table 1

displays the data statistics. Although all of the documents

are news articles, in comparison to the development set and

test set 1, the training set has more sentences per document.

Test set 2 (online documents), on the other hand, includes

more sentences and entities per document than the training

set, yet the total number of words in each sentence is small.

It shows in comparison to the news documents, online

documents have a larger density of related information.

4.3 Train/test data for multi-class relation
classification model

In the cargo ontology, there are 43 distinct relation types.

There are two possible argument ordering for each of the

relation types.

The relation types are chosen based on the wide cov-

erage of the relations in the special cargo ontology [39].

Table 2 shows an instance of the relation type and an

example sentence for it. The dataset is in the standard

format of SemEval-2 Task8 [55] and publicly available on

GitHub.5

Existing datasets usually comprise hundreds of samples

for their target relation types. In specific domains such as

special cargo transportation, generating a dataset is costly.

We selected and annotated only a few sample sentences for

each relation type. Two domain experts independently

annotate each sentence. The experts agree on 87% of the

instances. We apply the agreed subset of the data in our

experiment for assessing both multi-class classifiers.

Table 3 shows the statistics of the datasets.

In the SCRS dataset, each relation type has only a few

instances. SCRL is generated by increasing amount of

relation type instances in SCRS. We build two datasets,

namely SCRSM and SCRLM by combining similar classes

in SCRS and SCRL datasets. The datasets have the least

semantic overlap across the classes and serve as coarse-

grained representations of the domain classes.

5 Experiments

In this section, we evaluate the effect of proposed relation

representation models developed on the hierarchical multi-

task model and BERT in the performance of the special

cargo multi-class relation classifier. We present the results

of the experiments using F1 score on the datasets described

in Sect. 4.3.

5.1 Performance measures

F1 and Accuracy are widely used performance metrics in

the evaluation of Relation Extraction and FewRel tasks

[33, 56, 57]. Accuracy measures the overall correctness of

the extracted relations in the special cargo domain which is

important in evaluating the quantitative measure of the

model performance. Accuracy is calculated as the ratio of

Table 1 Statistics of the datasets generated based on the proposed

pipeline for training the attention-based hierarchical multi-task model

[38]

Train set Dev set Test Set1 Test Set2

Total documents 552 53 52 10

Total sentences 8361 556 548 221

Sentences per document 15.15 10.49 10.54 22.10

5 https://github.com/VahidehReshadat/CargoRelationExtraction.
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correct predictions to the total number of predictions made

across all classes. We calculate the accuracy of the model

across different few-shot settings, such as 1-shot or 5-shot

classification or with different ways of generating support

sets.

Accuracy alone is not a sufficient indicator in the special

cargo information extraction task as it does not take into

account the incorrectly identified relations and non-iden-

tified relations by the special cargo relation extractors. F1

score, on the other hand, considers the harmonic mean of

precision and recall which makes it a better evaluation

metric for information extraction in our domain. Precision

measures the fraction of the number of correctly extracted

positive relation instances to the total number of extracted

positive relation instances. Recall measures the fraction of

the number of correctly extracted relation instances to the

total number of relation instances in the dataset. F1 gives

equal weight to both metrics. Therefore, it provides a

balanced evaluation of the classifier’s performance with

respect to both precision and recall.

Precision

¼ Number of correctly extracted positive relation instances

Total number of extracted positive relation instances

ð8Þ

Recall¼ Number of correctly extracted relation instances

Total numberof extracted relation instances

ð9Þ

F1 ¼ 2� Precision� Recall

Precisionþ Recall
ð10Þ

5.2 Evaluation of the BERT-based multi-class
relation classifier for the special cargo
domain

The performance of the relation classifier over the relation

representation obtained from BERT and BERT ? MTB is

measured by applying SCR datasets. The hyper-parameters

of the model that are used in the experiments are shown in

Table 4. This setting is employed for the experiments to

perform a fair comparison.

The result of training the classifier with/without MTB is

displayed in Table 5. We examine the classifier based on

the BERT-Base and BERT-Large architectures. Since the

concatenation of the corresponding representation of the

beginning entity markers is used, we notate these versions

as SCREBERT(EM). Then, the results are compared with the

variants of BERT trained with domain data using the MTB

Table 2 Examples of relation types and sample sentences that are used as input of the proposed models

\ e1[Brussels Airport\ /e1[ signs MoU for the seamless transportation of\ e2[COVID-19 vaccine\ /e2[ Ships (e1,e2)

\ e1[Active Pharma Ingredients\ /e1[ is required to be pre-cooled within the desired temperature

between\ e2[-25 and -15 �C\ /e2[ before loading by the shipper

HasTemperatureRange

(e1,e2)

The\ e1[Va-Q-Tec containers\ /e1[ keep the\ e2[ Pfizer/BioNTech vaccines\ /e2[ cool enough isPackedIn (e2,e1)

Table 3 Statistics of the dataset generated for training relation classifier with multiple classes

SCRS SCRL SCRSM SCRLM

Train set Test set Train set Test set Train set Test set Train set Test set

#Annotated samples 230 104 420 104 180 80 310 80

#Relation types 43 43 43 43 19 19 19 19

The table shows the number of annotated samples and relation types for each train and test set

Accuracy ¼ Total number of the correctly classified positive and negative relation instances

Total number of relation instances
ð7Þ
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approach. These versions are notated as

SCREBERT(EM)?MTB.

Based on the evaluations, SCREBERT(EM)?MTB achieves

a higher F1-score when compared with SCREBERT(EM).

This improvement is not significantly different since the

generated corpus for training the model is not large enough

to train the MTB model. The performance of the model on

the merged relation instances is high since unifying the

similar relation instances strengthens the classifier’s dis-

tinguishing ability. Moreover, utilizing BERT-Large leads

to an improvement in performance due to it being trained

on a massive dataset. Therefore, applying a large dataset

with coarse-grain relations using BERT-Large transformer

yields the highest performance.

The relation samples in the dataset are in bidirectional

setup. For instance there are two different variations for

Ships relation, one that shows e1 entity ships e2 entity

(Ships(e1,e2)), the other illustrates e2 entity ships e1 entity

(Ships (e2,e1)). We measure whether the model is able to

detect relations correctly, regardless of the direction.

Table 6 shows the assessment of the model without

directions. The performance of the model is improved

when we compare it with the case where the direction of

the relations is taken into account. In this situation,

performance is calculated using instances classified in the

proper class but in a different direction. In both experi-

ments over the directional and non-directional datasets, we

see that there is not a large gap between the performance of

the model trained on the large dataset that has almost two

times more samples than the small dataset. Furthermore,

even applying BERT that solely relies on the general

domain texts yields reasonable performance. This shows

that using representation learning is effective for low-re-

source domains.

Table 4 The hyper-parameter

configurations used in BERT-

based multi-class relation

classifier

Epochs 55

Learning rate 0.0005

Batch Size 32

BERT-base architecture 12-layer, 768-hidden, 12-heads, 110 M parameters

BERT-large architecture 24-layer, 1024-hidden, 16-heads, 340 M parameters

Table 5 Evaluation results (F1) on special cargo test data for multi-class relation classification built on different BERT configuration

SCRS SCRL SCRSM SCRLM

BERT-base BERT-large BERT-base BERT-large BERT-base BERT-large BERT-base BERT-large

SCREBERT(EM) 49.5 51.73 52.88 53.92 62.5 63.82 67.09 68.54

SCREBERT(EM)?MTB 49.97 52.3 53.32 54.68 63.4 65.21 69.14 69.88

According to the assessments, SCREBERT(EM)?MTB outperforms SCREBERT(EM) in terms of F1-score

Table 6 Evaluation results (F1) of the multi-class relation classification built on BERT with non-direction datasets

SCRS SCRL SCRSM SCRLM

BERT-base BERT-lLarge BERT-base BERT-large BERT-base BERT-large BERT-base BERT-large

SCREBERT(EM) 53.39 54.87 55.07 56.42 65.38 67.23 71.05 72.68

SCREBERT(EM)?MTB 54.98 55.39 56.13 57.74 66.26 69.12 72.94 74.14

The performance of both models is improved in comparison with the case where the direction of the relations is taken into account

Table 7 The configuration of the hyper-parameters in the hierarchical

multi-task-based multi-class relation classifier

Epochs 20

Learning rate 0.0005

Dropout rate (Embedding) 0.5

Dropout rate (LSTM) 0.2

Batch size 32

Word embedding dimension 100

Char embedding dimension 16
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5.3 Evaluation of the special cargo multi-class
relation classifier developed on hierarchical
multi-task model

In this section, the efficiency of the multi-class relation

classifier is examined using the representation developed

from the hierarchical multi-task model on the SCR data-

sets. Table 7 lists the hyper-parameters of the model uti-

lized in the evaluations. The same setting is used in all

evaluations to ensure a fair comparison.

In our implementation, besides ELMO6 [44], GloVe7

[43], and CNN8 [45] for embedding the input, the proposed

hierarchical attention-based multi-task architecture consists

of a CRF-based sequence tagging layer and a BiLSTM

with an attention layer. We adapted a PyTorch imple-

mentation Matching The Blanks9 (MTB) [33] for imple-

menting the Bert-base relation extractor for the special

cargo domain. We applied Python (3.6 ?), PyTorch

(1.2.0 ?), and Spacy (2.1.8 ?) in our implementation.

Regenerating the models by other researchers is also easy

as it is clear how the data is prepared, and classifiers are

trained and implemented. The code and datasets are also

available in GitHub10 platform for verification and

reusability. It is also possible to easily customize and

implement the model for similar problems in other domains

and generate the data automatically.

The hierarchical model is employed for feature extrac-

tion in the special cargo domain and generates a rich fea-

ture representation for the multi-class relation classifier.

Table 8 shows the experimental results of the classifier

trained with features elicited from the base model. The

model performance in classifying both coarse-grain and

fine-grain relations is promising.

The performance of the multi-class relation classifier is

promising since it is trained with the inductive transfer;

however, the evaluation result is not as high as that of the

BERT-base model as BERT has used a very large corpus

for pre-training. The dataset used for training the hierar-

chical multi-task representation model is quite smaller than

that of BERT; therefore, increasing the amount of domain

data will produce higher performance.

In order to assess the efficiency of the model over

undirected relations, a new set of experiments are per-

formed. Table 9 illustrates the results. The results demon-

strated that in comparison with the prior scenario, the

model obtains a higher F1-score across various datasets.

One probable explanation is that determining the proper

class regardless of name entities order solely improves

performance.

Table 8 Evaluation results (F1) for multi-class relation classification

developed on hierarchical multi-task model

SCRS SCRL SCRSM SCRLM

SCREHMTL 43.31 46.25 55.73 56.48

The multi-class relation classifier has demonstrated promising

performance

Table 9 Evaluation results (F1) for multi-class relation classification

developed on hierarchical multi-task model over the non-direction

datasets

SCRS SCRL SCRSM SCRLM

SCREHMTL 46.72 47.18 59.26 60.88

The results demonstrated that in comparison with original dataset, the

model achieves a higher F1-score across different datasets

Table 10 Accuracy for FewRel few-shot relation classification

5 way 1 shot 10 way 1 shot

HMTL BERT HMTL BERT

SCRS 57.82 66.17 51.42 56.07

SCRL 74.68 82.05 64.52 73.07

SCRSM 53.84 61.94 46.75 52.66

SCRLM 59.01 76.53 57.2 65.36

The BERT-base classifier outperforms the Hierarchical Multi-task

learning-based classifier

Table 11 Accuracy for FewRel few-shot relation classification over

the non-directional dataset

5 way 1 shot 10 way 1 shot

HMTL BERT HMTL BERT

SCRS 40.1 46.44 35.4 41.2

SCRL 54.73 63.88 52.68 58.3

SCRSM 35.48 42.44 32.14 38.93

SCRLM 48.21 55.71 41.2 49.77

The BERT-base classifier outperforms the Hierarchical Multi-task

learning-based classifier
6 https://github.com/allenai/allennlp-models.
7 https://nlp.stanford.edu/projects/glove/.
8 https://github.com/kamalkraj/Named-Entity-Recognition-with-

Bidirectional-LSTM-CNNs.
9 https://github.com/jpablou/Matching-The-Blanks-Ths.
10 https://github.com/VahidehReshadat/SCRE and https://github.

com/VahidehReshadat/CargoRelationExtraction.
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The experiment results also support this argument that

training by hierarchical multi-task model can significantly

reduce the human effort for generating domain training

data and consequently relation extractors creation and

knowledge base population.

5.4 Few-shot relation matching

In few-shot relation matching, given a query relation

statement, the candidate relations are ranked and matched.

We evaluate the few-shot relation matching task on the

SCR dataset. In this case, the dot product is applied as a

similarity score between the relation representation of the

query and each of the candidate statements.

Few-shot learning is usually studied using N-way-K-

shot classification. Here, we aim to discriminate between N

classes with K examples of each. Tables 10 and 11 show

the evaluation results of the few-shot relation classification

task on the two different variants of the datasets.

The BERT-base classifier outperforms the Hierarchical

Multi-task learning-based classifier. This is probably

because BERT employs a large dataset in the training

phase. The evaluation results show the performance

increases either when the diversity of relation types

decreases or the number of training samples for each

relation type increases.

6 Discussion and practical implications

The experimental findings represent the effectiveness of

the special cargo relation representation models in two

tasks: relation extraction and few-shot relation matching.

The special cargo relation extractors provided comparable

performance over the different datasets. Learning relation

representation through pre-trained models solely has a

great effect on the efficiency in the special cargo domain,

and the influence of increasing the quantity of the training

data on performance is not impressive. This noticeably

reduces the human effort in domain-specific tasks.

Since the multi-task hierarchical architecture benefits

from the inductive transmission within tasks, it provides a

complementing representation from the lowest level to the

highest level of the model. This results in an easy feature

flow from the bottom to the top of the architecture that

accelerates the training process.

We can automatically build sufficient datasets for the

underlying tasks from domain-specific texts with minimum

human interventions and apply them in the multi-task

representation model setting. Because underlying tasks are

trained using only automatically generated domain-specific

data, building the model is effective, simple, and inex-

pensive. This architecture can be easily adapted to a low-

resource target domain. The whole model can be trained

end-to-end without any external linguistic tools or hand-

engineered features.

Natural Language Processing (NLP) tasks can be

broadly categorized into syntactic and semantic tasks based

on the linguistic analysis used in them, which involve

different aspects of language analysis and understanding

[58, 59]. Semantic tasks refer to a range of tasks that

involve understanding the meaning of human languages

such as Named Entity Recognition (NER) and Relation

Extraction. Syntactic tasks, on the other hand, focus on

analyzing the grammatical structure and the syntax of

sentences, such as Part-Of-Speech tagging and Parsing

[60]. Hierarchical architectures are most effective when

their constituents’ tasks are related [61]. Since the final

target task is a semantic task, the proposed multi-task

hierarchical architecture is designed on a set of semantic

tasks. The model aims at integrating a set of semantic tasks

ranging from NER to Binary Relation Extraction into a

single architecture.

The number of layers in the multi-task hierarchical

model depends on the complexity of the target classifica-

tion task. We design the layers based on the complexity of

our target task, namely the multi-class relation extraction.

The linguistic hierarchies between NLP tasks are discussed

in [41, 60]. The ‘‘Low-level’’ tasks are simple and require a

limited amount of modification to the input of the model

while other ‘‘higher-level’’ tasks require a deeper pro-

cessing of the inputs and likely a more complex architec-

ture. It is argued in [61] that low-level tasks that are

assumed to require less knowledge and language under-

standing are better kept at the lower layers, enabling the

higher-level tasks to make use of the shared representation

of the lower-level tasks. In principle, the linguistic levels of

semantics tasks would benefit each other by being trained

in a single model. We incorporate this knowledge in the

hierarchical architecture and design 3-levels of multiple

tasks using the concept of the linguistic hierarchies of NLP

tasks in [41, 60]. Thus, the lower-level semantic tasks (e.g.,

NER) affect the representation of the higher-levels (e.g.,

Binary Relation Extraction) ones in a seamless cascaded

way. The shared embeddings and stacking hierarchical

encoders allow us to share the supervision from each task

along the full structure of our model and achieve state-of-

the-art performance.

The attention layer in a BiLSTM model is used to

selectively focus on certain parts of the input sequence that

are most relevant to the task at hand. The attention layer

uses a mechanism that assigns attention weights to each

time step of the input sequence, based on how important

they are for predicting the output. These weights are then

used to compute a weighted sum of the input sequence,

which captures the most important information. The
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required attention layers in our model are selected based on

the number of tasks in the designed architecture. They are

put on top of each task to convey important features in a

hierarchical way and function as a connector to the other

tasks. This attention mechanism helps the model to better

understand the relationships between different parts of the

input sequence, which can improve the accuracy of the

model’s predictions. Attention connections are key in the

performance of the model, as they feed important parts of

the sequences to the higher-level tasks and help them to

encode the rich representation.

The proposed approach is improved and operated at high

performance using BERT. Relation extractors built over

BERT-based relation representation models outperform the

hierarchical multi-task representation model. One potential

reason is the size and domain of the training data used in

BERT training. BERT is trained on an enormous corpus

with both general and domain-specific texts, whereas the

hierarchical multi-task model is based primarily on a lim-

ited dataset of domain-specific texts. While the supervised

multi-task learning model can encode a rich complemen-

tary representation of the linguistic features for input sen-

tence through leveraging different underlying tasks in the

hierarchical setting, it seems still the size of training data

makes it difficult for SCREHMTL to achieve substantial

results. Hence, it is more likely that increasing the size of

training data or exploiting a rich encoding resource (e.g.,

BERT and GPT-3 [62]) in the model architecture leads to

an efficient hierarchical multi-task model over BERT.

In terms of computational point of view, the proposed

models are computationally efficient and cost-effective.

The training time of the best model on 4 9 Titan V, 12 GB

HBM2 with 12 cores took less than 20 min. Due to the

simple structure and the small training dataset, training the

hierarchical multi-task model is easier than BERT-based

models and needs fewer data and human effort. Thus, they

are efficient in any domain with limited training data such

as special cargo shipment. In hierarchical attention-based

multi-task architecture, we employ Convolutional Neural

Network (CNN) for extracting the character-level features

because CNNs perform similarly to Recurrent Neural

Networks (RNNs) in terms of performance, but RNNs are

computationally more expensive to train, as reported by

[63].

Training is sped up in the multi-task setting [42]. This

means that training time for each task in the hierarchical

model is reduced in comparison to the single-task model

training framework. Thus, the processing time required to

execute the task is shortened. Namely, the count of updates

required to achieve convergence is reduced. This supports

the insight that the features obtained from one task are

conveyed to the other tasks within the hierarchical model.

For obtaining a domain-specific relation embedding,

both relation representation models are trained using

domain-specific training corpora generated with least

human intervention. Increasing the amount of tunning data

does not provide a significant boost in the performance of

the models. Thus, because of the fact that little human

participation is involved in training these relation repre-

sentation models, they are efficient in any domain with

small training data such as special cargo shipment.

This research sheds light on the development and design

of logistic knowledge bases as well as the methods for

extracting domain-specific data. As a structured resource,

populating special cargo ontology provides valuable

insights into the scope of the application, the different

components of the system, and the interaction between

them. Furthermore, the ontology can be used during the

actual operation of the system.

As an example, the fact that Pfizer vaccines need to be

shipped at specific temperature can be reasoned from the

special cargo ontology, which means that, when the freight

forwarder processes a request for shipping vaccines, the

system can determine that the cargo service needs to con-

tain temperature requirements for vaccines to be shipped.

Figure 9 illustrates an example of how the cargo

ontology can be included in the context of a logistics

intelligence system and helps the planning of special cargo

shipments. When a shipping request arrives, the freight

forwarder sends a query to the special cargo intelligent

system in order to find the shipment requirements. The

proposed relation representation models can be part of the

knowledge base and applied as information extractors for

extracting the instances (Pfizer, Va-Q-Tec, -80 �C) for

the concepts of the special cargo ontology (Container,

Pharmaceutical, Temperature) to populate the ontology and

employ it in semantic reasoning. Our approach processes

the input domain information as explained in Sect. 3.2 and

output the triples in the form of entities and the relation

between them (Pfizer, IsPackedIn, Va-Q-Tec), (Va-Q-Tec,

HasTemprature, -80 �C) based the relations defined in the

special cargo ontology IsPackedIn, HasTemprature.

The special cargo ontology is used to infer that vaccines

must be transported at a specified temperature. Unlike a

database, ontology is not a schema that only stores the

desired relations and then retrieves them. It can be used for

asking questions that are not explicitly expressed in the

ontology. The fact that Pfizer is stored at -80 �C is not

explicitly expressed in the ontology and is acquired by

inferencing knowledge from existing facts based on certain

rules and constraints namely: Pfizer is packed in Va-Q-Tec,

Va-Q-Tec has temperature -80 �C, Covid19 vaccines are

stored in a special temperature. The result of reasoning

helps freight forwarders in decision-making in planning.
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As a result, this novel data analytics model can play a

major role in the freight forwarding industry by providing a

set of solutions for many intelligent applications in logis-

tics. This is currently quite challenging for shippers and

forwarders, due to the intricate characteristics of special

products (e.g., different types of pharmaceutical products

such as COVID-19 vaccines) and the absence of capability

and service standardization supplied by airfreight compa-

nies. Applying the models similar to the proposed ones is

essential in acquiring and modeling of logistics and cargo

knowledge due to addressing these limitations and opti-

mizing the solutions for the organizational issues.

7 Conclusion

The special cargo airfreight, which transports commodities

that require special handling, is in desperate need of digital

innovation. With this paper, we aim to bring innovation in

order to find a robust approach to elicit and model relevant

information.

Training an efficient model with limited data is chal-

lenging. Lack of specific domain data makes the prob-

lem worse. In this paper, we proposed two different

relation extraction approaches for the special cargo domain

based on two different representation learning models

namely, BERT and hierarchical multi-task architecture.

BERT-based relation representation solely relies on entity-

linked text, and applying MTB training setting yields

enriched domain-specific relation representation. The

multi-task relation representation model is built on differ-

ent tasks from deep at the top layers to shallow at the

bottom layers in a hierarchical setting. The generated

representations are then integrated into a new classifier, and

the final model is trained. The proposed models can be

applied for classifying the relations in populating the spe-

cial cargo domain ontology.

In order to evaluate the proposed models, we developed

some datasets in the special cargo domain. The experiment

results demonstrate that when dealing with small training

data in a specific domain, applying proposed models is

even more effective than increasing data size. Thus, the

proposed models are particularly useful in low-resource

environments and minimize human intervention for gen-

erating information extraction datasets in specific domains.

This work is one of the first studies that investigate

multi-class relation extraction in the special cargo domain.

Since the architectures are independent of the domain, they

could be used in other domains. In the future, we intend to

use external knowledge resources as well as our relation

embeddings. In addition, we will consider how well the

attention-based multi-task model performs in domain tasks

like co-reference resolution.
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11. Gómez-Pérez A, Manzano-Macho D (2003) A survey of ontology

learning methods and techniques. OntoWeb Deliverable D, vol. 1.

12. Bermejo A, Villadangos J, Astrain JJ, Córdoba A (2013) Ontol-
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